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Influence of the mechanical behavior law on the drying of an alumina gel
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Abstract

Some catalysts supports are made from gelified alumina pellets. In the manufacturing process, drying can be an important stage in
improving both texture and strength. In order to ease the comprehension of the phenomena, the drying of a pellet has been modeled with
an Eulerian set of conservation equations (mass, energy and motion). A pseudo-elastic law issued from rheological experiments has been
used to close the mechanical problem. © 2002 Published by Elsevier Science B.V.
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1. Introduction

Aluminas are widely used in the chemical industry. In
catalyst reforming, the synthesis of catalysts supports uses
a colloidal sol–gel route. The catalysts supports studied in
the present work are prepared following the flowchart of
Fig. 1. In the first step, the suspension of a colloidal powder
is formed by mechanical dispersion of a microcrystalline
powder of boehmite in an aqueous solution of nitric acid.
The ensuing material is a gelatinous precipitate whose pep-
tization rouses a light charging of the boehmite platelets in
order to ease the shaping, that occurs in the second step:
gelation. By oil dropping the latter precipitate in a basic so-
lution, colloidal particles link together, so that they form a
three-dimensional network. The shape and size of the geli-
fied beads are linked to the diameter of the dropping needle.
In the third step, drying in air performs the transition of the
gel to a solid, an aerogel. Since the support has to be acidic
in order to activate isomerization and dehydrocyclization
reactions, it is then fired at 600 ◦C in an atmospheric furnace
to lose its structural water and become a �-alumina support.

During the reforming process, the catalyst works as a
molecular traps and suffers from hard thermomechanical
conditions that may involve damages. One of the stake of
the supports manufacturing is to better both their resistance
and their pores range. As a stage where the mean diameter
of the pellets drops from 4 to 2 mm and at the same time the
porosity becomes visible, drying appears to be a favorable
phase to reach these aims.
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The improvement of the comprehension of the drying
processes needs a model that describes both the heat and
mass transfer and the deformation of a drying pellet.

2. Experimental

2.1. Physical properties of the pellets

Table 1 gives the physical properties of the pellets.
The stoichiometric composition is determined by firing
the beads up to their transformation into �-alumina, the
metastable alumina. The initial solvent content is measured
after heating the beads at 120 ◦C during 24 h. Specific sur-
face is evaluated with BET. Pores size is determined using
mercury porometry [1].

2.2. Sorption curves

Sorption curves are determined by the isopieztic method
(Fig. 2). They present a very short monolayer zone and a very
long multilayer zone. The third zone begins for water activity
around 0.5. The main characteristic of these curves is that the
solvent in zone 3 is quasi-exclusively composed of bound
microcapillary liquid, as set off from the typical flat-shaped
curves for high activities. Their fit using a the Guggenheim,
Anderson and de Boer (GAB) model appears to be the most
appropriate for this product, since the monolayer surface
computed from this model has a similar value to the one
issued from BET (approximately 220 m2/g) (Table 2).

Weq = WmonoawLM

(1 − awM)(1 + awLM − awM)
(1)
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Nomenclature

a activity (–)
C massic fraction (–)
Cp specific heat (J/kg K)
D transport coefficient (m2/s)
F mass flux (kg/m2 s)
G relaxation modulus (Pa)
h external transfer coefficient (m/s)
�hv vaporization enthalpy (J/kg)
K bulk modulus (kg/m2 s)
L coefficient of GAB fit (–)
M coefficient of GAB fit (–)
RH relative humidity (–)
T temperature (◦C)
u displacement vector (m)
v velocity vector (m/s)

Greek symbols
δ Kronecker symbol (–)
ε strain tensor
λ thermal conductivity
µ second Lamé coefficient (Pa)
ν Poisson ratio (Pa)
ρ volumetric concentration (kg/m3)
σ stress tensor (Pa)

Superscripts
g gas phase
l liquid phase
s solid phase
0 dry
overline local volume averaged quantity

Subscripts
anh anhydrous
eff bound moisture
eq equilibrium
l liquid phase
m material
mono monolayer
s solid phase
∞ ambiance

Fig. 1. Flowchart of the supports synthesis.

Table 1
Physical properties of boehmite pellet

Stoichiometric composition Al2O3·1.87H2O
Solvent content (d.b.) 3.5
Specific surface (m2/g) 276
Porous distribution Monomodal at 47 Å
Specific porous volume (cm2/g) 0.365

2.3. Shrinkage curves

Drying triggers a very important reduction since the vol-
ume of the dry pellet is the eighth of the initial volume.
Specific shrinkage curves result from photography survey
(Fig. 3). They depict an ideal contraction for moisture con-
tent down to 1, whatever the air conditions (RH, T). During
this step, the volume change is directly bound to the water
removal. So following Kneule [2], no textural change is
supposed to happen until moisture contents lowers approxi-
mately 1.

2.4. Rheology

The rheology of wet samples has been studied on an im-
posed shear stress plate–plate rheometer. Rheometric study
of dry samples has been conducted on both an imposed strain
rheometer and an ultrasonic device in order to check the
accordance between the results. The moisture contents be-
tween 1 and 0 have not been investigated, since the applied
stresses involve the desegregation of the product. The storage
modulus as well as the loss modulus versus the frequency are
plateau-like curves, which is typical of a gel (Fig. 4). Both
moduli are increasing with lower moisture contents, which
is normal for the storage modulus but more unusual for the
loss modulus: the viscous part of a gel becoming a solid
should diminish (Fig. 5). In fact, it consists in the response
of the particles part of the gel to the increasing stresses.

Table 2
Identified GAB model coefficients for the boehmite beads

Temperature (◦C) Wmono L M

30 0.08 20.52 0.906
50 0.06 14.00 0.92
70 0.045 13.00 0.945
82 0.032 10.00 0.97
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Fig. 2. Sorption curves.

Fig. 3. Shrinkage curves for different RH.

We finally adopt a pseudo-elastic deformation model in
which the bulk modulus K and the second Lamé coefficient
are function of the moisture content

σij = (K(W)− 2
3µ(W))ε

∗
kkδij + 2µ(W)ε∗ij (2)

Fig. 4. Storage moduli vs. frequency.

where the bulk modulus results from G by the following
equation:

K = 2(1 + ν)

3(1 − 2ν)
G (3)
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Fig. 5. Mean loss and storage moduli vs. W.

2.5. Specific heat of the gel

The specific heat of a dry sample has been measured on a
Dynamic Scan Calorimeter. It has been correlated as follows:

Cp anh = a + b(T − 273)+ c(T − 273)1.5

+ d(T − 273)2 + e(T − 273)2.5 (4)

where T is the absolute temperature (K) and

a = 784.94, b = 14.36, c = −4.11,

d = 0.59, e = −0.03 (5)

We have then assumed that the specific heat of the gel verifies
a barycentric relation (Fig. 6)

Cp gel(W) =
(

W

1 +W

)
Cpw +

(
1

1 +W

)
Cp anh (6)

2.6. Transport coefficient

Due to the fact that the pore size of the gel is of the order
of some nanometers, we suppose that the transport of the
solvent conforms to Fick’s law [3].

Fig. 6. Specific heat vs. absolute temperature of an anhydrous gel sample.

Crank [4] expressed the diffusion of solvent in a
non-shrinking sphere (viz. in Lagrangian coordinates) as

Fm(t)∫∞
t=0Fm(τ ) dτ

= 1 − 6

π2

∞∑
n=1

1

n2
exp

(
−Deffn

2π2t

R2

)
(7)

Since the exponential is decreasing very quickly, it is
possible to identify Deff from the following:

Deff = − R2

π2t
ln

((
1 − Fm(t)∫∞

t=0Fm(t) dτ

)
π2

6

)
(8)

From Deff , the Eulerian transport coefficient Dm can be
written as

Dm = Deff

(
ρs

ρ0
s

)2/3

(9)

3. Model of a drying pellet

3.1. Constitutive equations

The model described thereafter is an extension of a model
developed by Jomaa and Puigalli [5]. The pellet is assumed
to be a shrinking medium in which the liquid and solid
phases are followed during the drying. All the set of equa-
tions is written in Eulerian coordinates, so that mechanical
behavior law can be injected in the model by the mean of
the solid velocity.

• Motion equations

∇̃ · 〈σs≈
〉 = 0 (10)

with a boundary condition that expresses the lack of load
at the surface of the pellet

〈σs≈
〉 · ñsurf = 0 (11)
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Fig. 7. Comparison between experiment and simulation on mass flow.

• Continuity equation

∂

∂t
〈ρl〉 + ∇̃ · (〈ρl〉〈ṽs〉s) = ∇̃ · (Dm ∇̃〈ρl〉) (12)

with a boundary condition on the continuity of the mass
flow at the interface of the pellet and the air

Fm = −Dm ∇̃〈ρl〉 · ñsurf = hc(Csurf − C∞) (13)

• Energy equation

(ρCp)
∂〈T 〉
∂t

+ ((ρCp)〈ṽs〉s − Cl
pDm ∇̃〈ρl〉)∇̃〈T 〉

= ∇̃ · (λ≈ ∇̃〈T 〉)+ 〈Φ〉 (14)

with a boundary condition on the continuity of the heat flow
at the interface of the pellet and the air

ϕ(λ≈
∇̃〈T 〉) · ñsurf = Fm �Hv(Tsurf)+ hT (Tsurf − T∞)

(15)

Fig. 8. Comparison between experiment and simulation on specific shrinkage.

3.2. The rheological problem

The strain tensor results from the solid displacement by

ε≈
s = 1

2 (
t∇̃ũs + ∇̃ũs + t∇̃ũs · ∇̃ũs) ∼= 1

2 (
t∇̃ũs + ∇̃ũs) (16)

and the solid velocity and the displacement are relied by

〈ṽs〉s = ∂ũs

∂t
(17)

The strain tensor can be discomposed into a part resulting
from the behavior of the material ε∗ and an other part coming
from both hydric and thermal expansions εr [6]:

ε≈ = ε≈
∗ + ε≈

r (18)

Thus minimizing the following variational formalism leads
to the solution of Eq. (10):

V = 1

2

∫
Ω

((
K−2

3
µ

)
(εij − εrij)δij + 2µ(εij − εrij)

)
εij dΩ

(19)



100 F. Mercier et al. / Chemical Engineering Journal 86 (2002) 95–101

Fig. 9. Simulated moisture content fields evolution with drying.

Fig. 10. Simulated normal stresses evolution during drying.

where K and µ are moisture content dependent, as found
in the rheology survey.

To solve the whole problem, we have chosen to solve
separately each system by using spherical piecewise finite el-
ements for Eq. (19) [7] and spherical finite differences for the
others. Since it is a moving boundary problem, it is necessary
to re-mesh the domain after each minimization of Eq. (19).

4. Results and discussion

The simulation is in a good agreement with the experi-
ment as pictured in Fig. 7. Experimental mass flux shows a
long pseudo-isenthalpic plateau from the starting moisture
content down to an average moisture content neighboring
1, which corresponds locally to the beginning of the hy-
groscopic domain. The simulated mass flux presents this
characteristic plateau as well, in an order of value similar
to the one of the experimental mass flux. The simulated
temperature is coherent with experimental observations [1]

that indicate that the material remains at the wet bulb tem-
perature during the pseudo-isenthalpic stage before rising
up to the dry temperature at the end of drying.

However the model is a bit less efficient to describe the
specific shrinkage (Fig. 8). Simulated moisture content fields
as well as the pellet radius are pictured in Fig. 9. The flat
shape of the moisture content fields results from a strong
mass transport.

Normal stresses evolution during drying is plotted in
Fig. 10. The maximum stress is reached at the surface node.
But the most important information is that the range [0.4, 1]
in moisture content is a critical period for the drying of the
pellets. As an example, they can be damaged by internal
stresses.

5. Conclusions

A two phases model for the drying of alumina pellet
has been written. Its mechanical closure results from a
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pseudo-elastic law where the coefficients are identified
from a rheometric survey on wet and dry samples. With
this model, simulations present a good agreement with
experiment. One of the result is the evidence that the stage
of drying when moisture contents comprised between 0.4
and 1 is critical for the material.
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